Strikingly different molecular relapse kinetics in NPM1c, PML-RARA, RUNX1-RUNX1T1, and CBFB-MYH11 acute myeloid leukemias.

نویسندگان

  • Hans Beier Ommen
  • Susanne Schnittger
  • Jelena V Jovanovic
  • Ingrid Beier Ommen
  • Henrik Hasle
  • Mette Østergaard
  • David Grimwade
  • Peter Hokland
چکیده

Early relapse detection in acute myeloid leukemia is possible using standardized real-time quantitative polymerase chain reaction (RQ-PCR) protocols. However, optimal sampling intervals have not been defined and are likely to vary according to the underlying molecular lesion. In 74 patients experiencing hematologic relapse and harboring aberrations amenable to RQ-PCR (mutated NPM1 [designated NPM1c], PML-RARA, RUNX1-RUNX1T1, and CBFB-MYH11), we observed strikingly different relapse kinetics. The median doubling time of the CBFB-MYH11 leukemic clone was significantly longer (36 days) than that of clones harboring other markers (RUNX1-RUNX1T1, 14 days; PML-RARA, 12 days; and NPM1c, 11 days; P < .001). Furthermore, we used a mathematical model to determine frequency of relapse detection and median time from detection of minimal residual disease to hematologic relapse as a function of sampling interval length. For example, to obtain a relapse detection fraction of 90% and a median time of 60 days, blood sampling every sixth month should be performed for CBFB-MYH11 leukemias. By contrast, in NPM1c(+)/FLT3-ITD(-), NPM1c(+)/FLT3-ITD(+), RUNX1-RUNX1T1, and PML-RARA leukemias, bone marrow sampling is necessary every sixth, fourth, and fourth and second month, respectively. These data carry important implications for the development of optimal RQ-PCR monitoring schedules suitable for evaluation of minimal residual disease-directed therapies in future clinical trials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CLINICAL TRIALS AND OBSERVATIONS Strikingly different molecular relapse kinetics in NPM1c, PML-RARA, RUNX1-RUNX1T1, and CBFB-MYH11 acute myeloid leukemias

Early relapse detection in acute myeloid leukemia is possible using standardized real-time quantitative polymerase chain reaction (RQ-PCR) protocols. However, optimal sampling intervals have not been defined and are likely to vary according to the underlying molecular lesion. In 74 patients experiencing hematologic relapse and harboring aberrations amenable to RQ-PCR (mutated NPM1 [designated N...

متن کامل

A novel hierarchical prognostic model of AML solely based on molecular mutations.

The karyotype is so far the most important prognostic parameter in acute myeloid leukemia (AML). Molecular mutations have been analyzed to subdivide AML with normal karyotype into prognostic subsets. The aim of this study was to develop a prognostic model for the entire AML cohort solely based on molecular markers. One thousand patients with cytogenetic data were investigated for the following ...

متن کامل

AML associated oncofusion proteins PML-RARA, AML1-ETO and CBFB-MYH11 target RUNX/ETS-factor binding sites to modulate H3ac levels and drive leukemogenesis

Chromosomal translocations are one of the hallmarks of acute myeloid leukemia (AML), often leading to gene fusions and expression of an oncofusion protein. Over recent years it has become clear that most of the AML associated oncofusion proteins molecularly adopt distinct mechanisms for inducing leukemogenesis. Still these unique molecular properties of the chimeric proteins converge and give r...

متن کامل

Rapid Detection of Prognostically Significant Fusion Transcripts in Acute Leukemia Using Simplified Multiplex Reverse Transcription Polymerase Chain Reaction

Multiplex reverse transcription polymerase chain reaction (mRT-PCR) has recently emerged as an alternative to cytogenetics. We designed and used simplified mRT-PCR system as a molecular screen for acute leukemia. Fifteen fusion transcripts were included: BCR-ABL1, PML-RARA, ZBTB16-RARA, RUNX1-RUNX1T1, CBFB-MYH11, DEK-NUP214, TCF3-PBX1, ETV6-RUNX1, MLL-AFF1, MLL-MLLT4, MLL-MLLT3, MLL-MLLT10, MLL...

متن کامل

Expression of CEBPA is reduced in RUNX1-mutated acute myeloid leukemia

CEBPA (CCAAT/enhancer-binding protein alpha) is a member of the C/EBP family of bZIP transcription factors encoding two different translational protein isoforms. The CEBPA transcription factor is involved in cell cycle arrest, repression of self-renewal and myeloid differentiation during normal hematopoiesis. In acute myeloid leukemia (AML), mutations in CEBPA result in a cellular differentiati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 115 2  شماره 

صفحات  -

تاریخ انتشار 2010